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Abstract

Background—Epithelial genes have previously been associated with asthma, but only explain a
small fraction of heritability. In part, this may be due to epistasis that is often not considered.

Objective—To determine independent and epistatic associations between FLG, SPINKS5 and
TSLP gene variants and childhood asthma.

Methods—Using a candidate gene approach, we genotyped 29 variants in FLG, SPINK5 and
TSLP in asthmatic, allergic, and non-allergic-non-asthmatic white and black children participating
in the well-phenotyped Greater Cincinnati Pediatric Clinic Repository (GCPCR). Associations
with asthma were also assessed in six replication populations.

Results—We observed independent associations of variants in SPINK5 (p=0.003) and TSLP
(p=0.006) with childhood asthma; a SPINK5 SNP was replicated. In subjects with one or more
SPINKS5 risk alleles, the absence of the TSLP protective minor alleles was associated with a
significant increase in asthma (67% vs. 53%, p=0.0017). In contrast, the presence or absence of
TSLP minor alleles did not affect asthma risk in subjects without the SPINKS risk alleles. The
SPINKS5 and TSLP epistasis was replicated in a black population (p=0.036) that did not display
independent association with variants in these genes.
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Conclusions—Our results support epistasis between SPINK5 and TSLP which contributes to
childhood asthma. These findings emphasize the importance of utilizing biology to inform
analyses to identify genetic susceptibility to complex diseases. The results from our study have
clinical relevance and support that the therapeutic effects of anti-TSLP therapy in asthmatics may
be dependent on SPINKS5 genotype.
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Introduction

Methods

Asthma is the most common chronic illness in children in the US, affecting 7.1 million
(9.5%) in 20111, Heritability estimates for asthma range between 0.36 and 0.7722, Since
1989, >100 candidate genes have been described in >1000 publications on asthma or an
associated disorderS. However, variants identified thus far confer small increments of risk,
leading to questions about how the remaining genetic risk can be explained’. These studies
have largely neglected genetic interactions including epistasis® and the large sample sizes
required for GWAS have often come at the expense of accurate, consistent phenotyping?®.

Loss of function variation in the filaggrin (FLG) gene is the most replicated genetic risk
factor for atopic dermatitis, and the data is clear that FLG is associated with asthma in the
presence of atopic features1-17, Thymic stromal lymphopoietin (TSLP), an epithelial-cell
derived cytokine that promotes differentiation and activation of T-helper 2 (Th2) cells and
their receptors, is a well-validated asthma susceptibility genel®. Murine studies have
suggested that TSLP may share the same genetic pathway as serine protease inhibitor Kazal-
type 5 (SPINK5)19: 20, which causes Netherton's Syndrome?! and has been associated with
asthma, but studies are conflicting22-25,

To assess the effects of skin-barrier related genes and asthma, we evaluated SNPs in FLG,
SPINKS5 and TSLP in 973 white and 530 black children. To maximize the impact of the
genetic associations in this study, cases and controls were rigorously and objectively
phenotyped with regard to asthma and allergies (an important distinction for control
selection that we recently reported25), our findings are replicated in six populations and we
account for population substructure using ancestry informative markers. In addition,
interactions of the candidate genes were evaluated given the mechanistic and biologic
plausibility of epistasis.

Study Populations

The discovery population consisted of a subset of 4 to 17 year old Caucasian/white and
African-American/black (the terms white and black will be used for simplicity) participants
enrolled in either the Greater Cincinnati Pediatric Clinic Repository (GCPCR) or the
Genomic Control Cohort (GCC), both described previously?’. The GCPCR includes over
6,500 patients and the GCC has 1,020 children and DNA was available on all participants as
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previously described?®. 29, Case-control definitions including those for asthma in the
GCPCR have been previously described?. All asthmatics were rigorously phenotyped by a
specialty physician (pediatric allergist or pulmonologist) according to ATS criteria30.
Allergic controls (participants with allergic rhinitis, atopic dermatitis or environmental
allergies) and non-allergic, non-asthmatic controls were available from both the GCPCR and
the GCC. The protocols were approved by the CCHMC Institutional Review Board and
participants gave written informed consent.

Among asthmatic children, asthma exacerbation was defined by previous hospitalizations
for asthma. Results from skin prick testing (SPT) were available on 56% of asthmatic and
allergic white children in the GCPCR. Children were defined as SPT positive if they had a
positive test to a pollen (trees, weeds, grass), dust (dust mite, cockroach), animal (cat, dog)
or mold at any time up to 6 months after their consent date.

Replication Cohorts

The replication populations were 1) 334 white trios (1002 individual samples) from the
Childhood Asthma Management Program (CAMP)3L; 2) 95 white trios (285 individual
samples) from the Childhood Asthma Research and Education (CARE) Network32; 3) 382
white children (57 asthmatics, 184 non-asthmatic SPT-controls and 141 non-asthmatic SPT+
controls) participating in the Cincinnati Childhood Allergy and Air Pollution Study
(CCAAPS)33: 4) 418 white individuals (207 GCPCR asthmatics enrolled after the discovery
cohort and 211 non-asthmatic controls from the Cincinnati Control Cohort (CCC, described
previously26)): 5) 347 white children (207 asthmatics and 140 allergic controls) and 6) 340
black children (272 asthmatics and 68 allergic controls) from the GCPCR enrolled after the
discovery cohort. CAMP and CARE data were downloaded with permission from the NIH-
based database of Genotypes and Phenotypes (dbGaP) (http://www.ncbi.nlm.nih.gov/gap).
Phenotypic description and details about the CAMP CARE data can be found at http://
www.ncbi.nlm.nih.gov/gap/?term=asthma. The ‘replication GCPCR’ were white and black
asthmatics and allergic controls that were enrolled in the repository after the discovery
GCPCR cohort. The CCC is a population-based cohort of white adults with no personal or
family history of asthma (by self-report) representative of Greater Cincinnati.

Gene and SNP Selection and Genotyping

The methods for the gene and SNP selection for the discovery array have been previously
described?6: 34, FLG, SPINKS5 and TSLP were chosen for these analyses based on their skin-
related role and biologic relevance in the pathogenesis of asthma. To reduce the number of
SNPs genotyped while generating the same amount of genetic information, tagging SNPs
that maximized genomic coverage and captured the common genetic variation in these genes
were selected using Haploview and Tagger (http://www.broad.mit.edu/mpg/haploview).
Table 1 includes a description of the selected genes, their reported processes and functions
as well as top associated disorders. A total of 40 SNPs, 1 truncation and 1 deletion in the
FLG, SPINKS and TSLP genes were considered for the discovery analyses.

Subjects from the GCPCR were selected for genotyping if they had 1) a pulmonary function
test or completed asthma symptom questionnaire, 2) a SPT or completed Children's Health
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Survey for Asthma3® and 3) 2250ng DNA with an optical density of 1.6-2.2. Allergic and
non-asthmatic, non-allergic controls were selected from the GCC that had available DNA.
Genomic DNA was isolated from GCPCR buccal swabs with either the Zymo Research
Genomic DNA 11 Kit (Zymo Research Corp., Orange, CA) or the Purgene DNA Purification
System (Gentra Systems Minneapolis, MN), and from Oragene saliva samples per the kit's
instructions. Genomic DNA was extracted from GCC blood samples using Manual
PerfectPure DNA Blood Kit (Invitrogen, Carlsbad, CA). Genotyping of GCPCR and GCC
samples was performed using a custom Illumina Golden Gate assay according to the
manufacturer's protocol (http://www.illumina.com; San Diego, CA)Z6: 34, Genotypes were
assigned using BeadStudio's genotyping module (BeadStudio v3.2, San Diego, CA).
Genotyping of FLG R501X truncation and 2282del4 deletion was performed by PCR and
restriction fragment length polymorphism in both CCAAPS and the GCPCR as previously
described36: 37, Genotyping of the CCAAPS population for SPINK5 (29 SNPs) and TSLP
(10 SNPs) was performed on banked saliva samples using a second custom Illumina Golden
Gate assay. The publicly available data downloaded from dbGaP for both the CAMP and
CARE replication cohorts were generated using the Affymetrix 6.0 SNP chip. Genotyping
data from the Affymetrix 6.0 SNP chip was also available for the CCC. For the replications,
all SNPs available in SPINK5 or TSLP for each population were included; only those SNPs
that were on the discovery SNP array and/or those that had a p<0.05 are displayed.

Statistical Analyses

SNPs failing Hardy Weinberg Equilibrium in the non-allergic control group (p<0.0001,
having minor allele frequencies below 10% in the combined controls; or missing call rates
greater than 10%) were excluded (n=11). In addition, individuals with more than 20% of
their total SNPs missing were excluded. Principal component (PC) analyses were performed
using the 30 included ancestry-informative markers (AIMs) in EIGENSTRAT?38: 39 to
account for potential population stratification. Sets of AIMS ranging from 24-128 are useful
tools for ascertaining the origin of subjects from particular continents, and to correct for
population stratification in admixed population sample sets*0. After PCs were included in
the model the genomic inflation factor was 1.0, suggesting minimal impact of population
stratification for these AIMs, which is not unexpected since the general Cincinnati
population does not show any North/South or East/West stratification based on larger panels
of AIMS used for the larger GCC population (data not shown). Using PLINK#1, associations
with asthma were tested adjusting for age, sex and PCs (four PCs used in white and no PCs
needed in black analyses) using the additive logistic regression model stratified by race. To
address multiple testing, we determined the average pairwise LD (as measured by r2) for all
SNP combinations and calculated the Bonferroni correction using Simple Interactive
Statistical Analyses Software (http://www.quantitativeskills.com/sisa/).

For the GCPCR whites and blacks, associations with the primary phenotype of asthma were
therefore considered significant at 0.0077 and 0.0039, respectively. For the CAMP and
CARE cohorts, association analysis was performed using the transmission disequilibrium
test (TDT)*2. The case-control analyses for the GCPCR/CCC replication was accomplished
by fitting a logistic regression model adjusted for sex. We used the strictest definition of
genetic replication provided by Sullivan et al, which requires that the replication be the same
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SNP, phenotype and direction of association resulting in a mean false replication rate of
2963,

Permutation tests provide a computationally intensive approach to generating significance
levels empirically. The purpose of the permutation test is to show that it is very unlikely that
a permuted dataset will achieve the same significance and the observed effect is not due to
chance. It also provides a framework for correction for multiple testing by keeping the
patterns of LD between SNPs the same under the observed and permuted samples. We
permuted the binary outcome (asthma vs. non-allergic control, or asthma vs. allergic control)
10,000 times and estimated the probability distribution of the statistic under the null
hypothesis. The empirical p value was defined as the probability of observing permuted
statistics larger than the observed statistics.

After the primary analyses, secondary analyses were performed to ensure that the observed
genetic associations with asthma were not due to other co-morbid allergic conditions such as
atopic dermatitis (AD) and sensitization. The genetic associations with asthma excluding all
cases with known co-morbid AD were performed by fitting a logistic regression model
adjusted for age, sex and PCs. Genetic associations with SPT were evaluated for any SPT+
as well as positivity to molds, pollens, animals or dust. Subjects that were SPT+ were
compared to non-asthmatic, non-allergic controls as well as SPT+/SPT- restricted to
asthmatics. The SPT analyses was carried out in PLINK#! adjusted for age, sex and PCs
using the additive logistic regression model in whites only due to sample size limitations for
the blacks.

To evaluate epistasis between SPINKS5 and TSLP, we conducted analyses using a gene
collapsing technique since the significant SNPs had low minor allele frequencies (~10%).
SNPs included in the analysis were identified by the magnitude of effect (OR) and
significance (p-value). Four SNPs in SPINK5 had an OR>1.3 and p<0.01 (rs2303064,
rs7445392, rs2303063 or rs9325071) and 3 SNPs in TSLP had an OR<0.70 and p<0.01
(rs10062929, rs11466749, and rs11466750). The children were then identified as having any
(SPINK5+) or none (SPINKS5-) of the minor alleles in the four risk SNPs from SPINKS5, as
well as having any (TSLP+) or none (TSLP-) of the minor alleles in the three protective
SNPs in TSLP. For FLG, children having one or more copies of the R501X truncation or
2282del4 deletion were defined as FLG+ and those with neither of these two
polymoprphisms were defined as FLG-.

Demographics of Discovery Subjects

A total of 1503 children from the GCPCR and GCC were eligible for genotyping on the
custom SNP chip after inclusion criteria were applied: age (4-17), race (Caucasian or
African-American), diagnoses (asthma, AR or AD), DNA quantity (=250ng), DNA quality
(optical density 1.6-2.2) and available pulmonary function test, SPT or questionnaire data
(asthmatics only). After excluding 37 genotyped children due to missing SNP call rates
>20%, the discovery GCPCR/GCC population consisted of 1,466 asthmatic (402 and 308),
allergic (257 and 152) and non-allergic (297 and 50) white and black children respectively
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(Supplementary Table 1). The non-allergic control children were older than the asthmatics
of similar race (p<0.05), and there were more male black asthmatics than black non-allergic
controls (p<0.05).

Genetic Associations with Asthma in the Discovery GCPCR Population

The associations of SNPs in FLG, SPINKS5 and TSLP were evaluated independently for
whites and blacks, adjusted for age, sex and population stratification. After consideration for
multiple comparisons, a non-synonymous SNP in SPINKS5, rs2303064, was significantly
associated with asthma in white subjects compared to non-allergic controls (p=0.003) and a
tagging SNP in TSLP (rs11466750) was significantly associated with asthma in whites
compared to allergic children (p=0.0056, Table 2). Multiple SNPs in both SPINKS5 and
TSLP were nominally associated with asthma (p<0.05). No SNPs or deletion variants in
FLG achieved significance.

To further substantiate our results and ensure that the family wise error rate was
appropriately controlled, we performed 10,000 permutations. The point-wise empirical p-
value was consistent with the observed p-value (0.0026 for rs2303064 and 0.0046 for
rs11466750; results not shown) supporting its validity. The family-wise corrected p-values
were 0.039 and 0.069 for rs2303064 and rs11466750, respectively.

In order to ensure that the genetic associations with asthma were not attributed to other co-
morbid allergic conditions such as atopic dermatitis (AD), we performed secondary analyses
excluding asthmatic cases with AD and evaluated SPT+ as an outcome. These analyses were
performed in whites only due to sample size limitations for the blacks. The associations with
asthma remained significant after asthmatics with known co-morbid AD were excluded
(p=0.003 for rs2303064 and 0.004 for rs11466750; data not shown), indicating an asthma
specific association. We did not observe any significant associations with SPT+ (data not
shown).

Genetic Associations with Asthma in Replication Cohorts

We evaluated SNP associations in the SPINKS5 and TSLP genes with asthma in six
additional populations: CAMP, CARE, CCAAPS, replication GCPCR/CCC, and replication
GCPCR (whites and blacks). Based on our stringent replication definition (same SNP,
phenotype and direction of association), we achieved replication of the SPINKS5 rs2303064
variant in the CARE population (p=0.046; Table 3). In addition, we observed additional
SNPs in SPINKS5 and TSLP to be nominally (p<0.05) associated with asthma in five of the
six populations (Table 3).

Epistasis between SPINK5 and TSLP

The literature suggests that SPINK5 and TSLP occupy a shared pathway where LEKTI
deficiency ultimately leads to TSLP production, increasing the Th2 response and causing
allergic lung inflammation?1: 44-48_ Therefore, we sought to determine if there were epistatic
effects of variation in the SPINK5 and TSLP genes on asthma prevalence. Formal gene:gene
analyses did not show an interaction between SPINK5 and TSLP (p=0.29). Further analyses
were performed stratified by either SPINK5 or TSLP genotype by conducting gene
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collapsing analyses. We evaluated the effects of having one or more of the 3 protective
TSLP alleles (rs10062929, rs11466749, and rs11466750) among subjects with and without
one or more of the risk SPINKS5 alleles (rs2303064, rs7445392, rs2303063 or rs9325071).
There was modest linkage disequilibrium among the SPINK5 SNPs as well as the TSLP
SNPs (Figure 1). In subjects with at least one of the SPINKS risk alleles (SPINK5+), the
absence of the TSLP protective minor alleles (TSLP-) was associated with a significant
increase in asthma risk (67% vs. 53%, p=0.0017, Figure 2A). In contrast, the presence
(TSLP+) or absence of TSLP minor alleles did not affect asthma risk in subjects without any
of the SPINKS risk alleles (SPINK5-, p=0.71).

Replication of Epistasis between SPINK5 and TSLP

Using biologic plausibility of a shared pathway from the published literature and the results
from above, we pursued replication of the observed epistasis of SPINK5 and TSLP in the
discovery GCPCR black, replication GCPCR white and replication GCPCR black
populations. Notably, there were no independent genetic associations at our LD-adjusted
Bonferroni level with any SNPs in SPINKS5 or TSLP in these three populations. Therefore,
we included SNPs with p<0.10 and OR >1.2 for SPINKS5 (rs6892205 and rs2303063) and
p<0.10 and OR <0.7 for TSLP (rs3806933 and rs2289276) in the analyses (Table 3). We
replicated the epistasis between SPINK5 and TSLP in the replication GCPCR black
population (Figure 2B); the other two populations did not replicate. As in the discovery
GCPCR white population, SPINK5+ black subjects that were SPINK5+ TSLP+ had a
significantly decreased asthma risk compared to subjects that were SPINK5+ TSLP- (73%
versus 85%, p=0.036; Figure 2B), whereas there was no effect of TSLP minor alleles among
subjects that were SPINK5- (p=0.80).

Discussion

While the role of skin-related genes in asthma has been previously reported, our data support
that asthma risk is, in part, a result of epistasis between skin-related genes (TSLP and
SPINKS). Using a well characterized cohort of white asthmatic cases and controls, we
identified SNPs in these genes to be significantly associated with asthma in children. The
finding with SPINK5 was replicated according to the strictest replication definition*3,
Additionally, we discovered epistasis between TSLP and SPINKS5 in whites. This was
replicated using a black cohort where neither gene was independently associated. These
findings highlight the importance of evaluating epistasis in genetic association studies.
Further, our results emphasize the need to utilize biology to inform analyses in order to
identify genetic susceptibility to complex diseases, substantiate the value of smaller well-
characterized cohorts in genetic association studies, and demonstrate the importance and
value of looking at functionally related genes, rather than one at a time as in GWAS, to
identify genes with clinical relevance.

This study further implicates skin-related genes in the pathogenesis of childhood asthma.
Interestingly, the associations of the skin genes with asthma were sustained when children
with co-morbid AD were excluded from the analysis, suggesting an independent asthma
effect. Associations between asthma and SPINK5 have been reported in the Chinese?4 and

J Allergy Clin Immunol. Author manuscript; available in PMC 2015 October 01.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Biagini Myers et al.

Page 8

German?2 populations. Previous studies have also found that TSLP SNPs are associated
with asthma?®, including a meta-analysis of GWASs in subjects of multiple ancestries®C.
This is the first report of an epistatic effect of SNPs in the SPINK5 and TSLP genes with
asthma. We discovered epistasis between TSLP and SPINK5 whereby children that had one
or more SPINKS5 risk alleles and were wild-type for all TSLP SNPs had the highest risk of
asthma. The addition of TSLP minor alleles conferred protection from asthma in the
presence of a SPINKS5 risk allele, and this protection was stronger than the association
between TSLP and asthma alone. Importantly, our primary analyses did not detect
independent significant associations with SPINK5 and TSLP in the black population. Only
after stratified analyses were we able to uncover the epistatic effect of SPINK5 and TSLP in
the black population. Thus, ignoring epistatic effects may mask important genetic
susceptibility. While other studies have utilized biologic plausibility®L: 92, results from
linkage analyses®3: 54 and bioinformatics®* 55 to inform analyses of genetic interactions in
asthma, our study is the first to apply this approach in an independent population and
replicate findings where no significant independent effects were observed (blacks).

Observations from animal models provide valuable insights into the possible mechanistic
basis for the observed epistasis between SPINKS5 and TSLP. Mice that lack Spink5
overexpress TSLP in the skin in the absence of lympho-epithelial kazal-type-related
inhibitor (LEKTI1)20. Overexpression in the skin leads to high systemic availability of TSLP
driving susceptibility to allergic inflammation in the lung, even in the absence of any skin
pathology®. TSLP transgenic mice develop severe asthma in the absence of a skin
phenotype and express low levels of the TSLP transgene in the trachea but not in the lung?®.
Further, the protein is absent in the bronchoalveolar fluid suggesting systemic skin-derived
TSLP is sufficient to predispose mice to allergic lung inflammation®. Models using lung-
specific expression of the TSLP transgene or intranasal administration of TSLP show that
increased lung TSLP drives an inflammatory response in the presence of antigen, suggesting
that TSLP modifies the response to aero-antigen, promoting inflammation2%: 56, Murine
models of asthma treated with anti-TSLP antibody reversed airway inflammation, prevented
structural alterations and decreased airway hyperresponsiveness®’, while suppression of
signaling with anti-TSLP receptor reduces eosinophilic airway inflammation, goblet cell
hyperplasia and TH2 cytokine production®.

These animal data, along with our results, support a shared pathway for SPINK5 and TSLP
(and possibly FLG) leading to airway inflammation and asthma development (Figure 3).
SPINKS5 overexpression in human epithelial cells leads to increased inflammatory cytokines
including IL6, IL8 and RANTES, indicating it may have a role in the pathogenesis of
asthma that is independent of protease inhibition® (Figure 3A). This suggests that SPINK5
stimulates the involvement of B and T lymphocytes, neutrophils and eosinophils active in
the inflammatory process through its effects on pro-inflammatory cytokines and
chemokines. In humans, LEKTI deficiency results in a lack of kallikrein-related peptidase 5
(KLK5) and KLK?7 inhibition2L: 0 and unopposed KLK14 activity?!, activating through
protease-activated receptor-2 (PAR-2) which is found at the surface of keratinocytes. PAR-2
then activates nuclear factor kappa B (NF-xB) leading to the production of the TSLP
cytokine?L: €0 causing the differentiation of ThO cells to Th2 which produce IL-4, IL-13 and
IL-5, amplifying the Th2 response and promoting inflammation, allergy and asthma (Figure
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3B). LEKTI deficiency also promotes increased profilaggrin cleavage** leading to a
compromised barrier® promoting sensitization and inflammation (Figure 3C).

While we were successful in identifying both main and epistatic effects with TSLP and
SPINKS5, no associations with FLG were identified. This is not surprising given the low
frequency of the functional FLG variants in our population resulting in inadequate power to
detect an association. However, our data does support that common variation in FLG,
represented by our 6 tagging SNPs, is not associated with asthma in these populations. A
meta-analysis of asthma regardless of eczema revealed a significant association with the
combined R501X and 2282del4 genotype (pooled OR 1.48, 95%CI 1.32-1.66)8, indicating
that FLG deficiency may predispose to asthma. However, the asthma association was driven
by the asthma plus eczema phenotype, supporting that FLG is only associated with asthma
in the presence of atopic features.

The identification of epistasis between SPINKS5 and TSLP is has immediate clinical
implications; there are clinical trials underway testing AMG157, a human monoclonal
antibody that inhibits the action of TSLP. Phase 1 escalation studies to evaluate the safety,
tolerability and pharmacokinetics in both healthy subjects and subjects with atopic
dermatitis have been completed®2: 63 and another study evaluating the effects of AMG157
on FEV1 after allergen inhalation challenge in mild atopic asthmatics is currently
recruiting®. The results from our study suggest that the therapeutic effects of anti-TSLP
therapy in asthmatics may be dependent on SPINKS5 genotype.

In conclusion, our results support a novel epistasis between SPINK5 and TSLP, which
contributes to childhood asthma. These findings emphasize the importance of utilizing
biology to inform analyses to identify genetic susceptibility to complex diseases, especially
in populations that do not exhibit independent genetic associations. The results from our
study are clinically relevant with respect to anti-TSLP therapy and suggest that therapeutic
effects in asthmatics may be dependent on SPINKS5 genotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 2.
Epistasis of SPINK5 and TSLP. (A) Discovery white GCPCR/GCC children. (B)

Replication of epistasis of SPINK5 and TSLP in replication GCPCR black children.
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Figure 3.
Hypothesized shared pathways leading to asthma and inflammation. (A) SPINK5

overexpression increases inflammatory cytokines. (B) LEKTI deficiency increases
KLK5/7/14, activating through PAR-2, and NF-kB leading to TSLP production, causing
allergy and lung inflammation. (C) LEKT]I deficiency increases profillagrin cleavage
compromising the skin barrier and contributing to sensitization and subsequent asthma.
Solid lines represent published pathways, dashed lines represent hypothesized pathways.
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