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Abstract

Background—Epithelial genes have previously been associated with asthma, but only explain a

small fraction of heritability. In part, this may be due to epistasis that is often not considered.

Objective—To determine independent and epistatic associations between FLG, SPINK5 and

TSLP gene variants and childhood asthma.

Methods—Using a candidate gene approach, we genotyped 29 variants in FLG, SPINK5 and

TSLP in asthmatic, allergic, and non-allergic-non-asthmatic white and black children participating

in the well-phenotyped Greater Cincinnati Pediatric Clinic Repository (GCPCR). Associations

with asthma were also assessed in six replication populations.

Results—We observed independent associations of variants in SPINK5 (p=0.003) and TSLP

(p=0.006) with childhood asthma; a SPINK5 SNP was replicated. In subjects with one or more

SPINK5 risk alleles, the absence of the TSLP protective minor alleles was associated with a

significant increase in asthma (67% vs. 53%, p=0.0017). In contrast, the presence or absence of

TSLP minor alleles did not affect asthma risk in subjects without the SPINK5 risk alleles. The

SPINK5 and TSLP epistasis was replicated in a black population (p=0.036) that did not display

independent association with variants in these genes.
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Conclusions—Our results support epistasis between SPINK5 and TSLP which contributes to

childhood asthma. These findings emphasize the importance of utilizing biology to inform

analyses to identify genetic susceptibility to complex diseases. The results from our study have

clinical relevance and support that the therapeutic effects of anti-TSLP therapy in asthmatics may

be dependent on SPINK5 genotype.
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Introduction

Asthma is the most common chronic illness in children in the US, affecting 7.1 million

(9.5%) in 20111. Heritability estimates for asthma range between 0.36 and 0.772-5. Since

1989, >100 candidate genes have been described in >1000 publications on asthma or an

associated disorder6. However, variants identified thus far confer small increments of risk,

leading to questions about how the remaining genetic risk can be explained7. These studies

have largely neglected genetic interactions including epistasis8 and the large sample sizes

required for GWAS have often come at the expense of accurate, consistent phenotyping9.

Loss of function variation in the filaggrin (FLG) gene is the most replicated genetic risk

factor for atopic dermatitis10, and the data is clear that FLG is associated with asthma in the

presence of atopic features11-17. Thymic stromal lymphopoietin (TSLP), an epithelial-cell

derived cytokine that promotes differentiation and activation of T-helper 2 (Th2) cells and

their receptors, is a well-validated asthma susceptibility gene18. Murine studies have

suggested that TSLP may share the same genetic pathway as serine protease inhibitor Kazal-

type 5 (SPINK5)19, 20, which causes Netherton's Syndrome21 and has been associated with

asthma, but studies are conflicting22-25.

To assess the effects of skin-barrier related genes and asthma, we evaluated SNPs in FLG,

SPINK5 and TSLP in 973 white and 530 black children. To maximize the impact of the

genetic associations in this study, cases and controls were rigorously and objectively

phenotyped with regard to asthma and allergies (an important distinction for control

selection that we recently reported26), our findings are replicated in six populations and we

account for population substructure using ancestry informative markers. In addition,

interactions of the candidate genes were evaluated given the mechanistic and biologic

plausibility of epistasis.

Methods

Study Populations

The discovery population consisted of a subset of 4 to 17 year old Caucasian/white and

African-American/black (the terms white and black will be used for simplicity) participants

enrolled in either the Greater Cincinnati Pediatric Clinic Repository (GCPCR) or the

Genomic Control Cohort (GCC), both described previously27. The GCPCR includes over

6,500 patients and the GCC has 1,020 children and DNA was available on all participants as
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previously described28, 29. Case-control definitions including those for asthma in the

GCPCR have been previously described26. All asthmatics were rigorously phenotyped by a

specialty physician (pediatric allergist or pulmonologist) according to ATS criteria30.

Allergic controls (participants with allergic rhinitis, atopic dermatitis or environmental

allergies) and non-allergic, non-asthmatic controls were available from both the GCPCR and

the GCC. The protocols were approved by the CCHMC Institutional Review Board and

participants gave written informed consent.

Among asthmatic children, asthma exacerbation was defined by previous hospitalizations

for asthma. Results from skin prick testing (SPT) were available on 56% of asthmatic and

allergic white children in the GCPCR. Children were defined as SPT positive if they had a

positive test to a pollen (trees, weeds, grass), dust (dust mite, cockroach), animal (cat, dog)

or mold at any time up to 6 months after their consent date.

Replication Cohorts

The replication populations were 1) 334 white trios (1002 individual samples) from the

Childhood Asthma Management Program (CAMP)31; 2) 95 white trios (285 individual

samples) from the Childhood Asthma Research and Education (CARE) Network32; 3) 382

white children (57 asthmatics, 184 non-asthmatic SPT-controls and 141 non-asthmatic SPT+

controls) participating in the Cincinnati Childhood Allergy and Air Pollution Study

(CCAAPS)33; 4) 418 white individuals (207 GCPCR asthmatics enrolled after the discovery

cohort and 211 non-asthmatic controls from the Cincinnati Control Cohort (CCC, described

previously26)); 5) 347 white children (207 asthmatics and 140 allergic controls) and 6) 340

black children (272 asthmatics and 68 allergic controls) from the GCPCR enrolled after the

discovery cohort. CAMP and CARE data were downloaded with permission from the NIH-

based database of Genotypes and Phenotypes (dbGaP) (http://www.ncbi.nlm.nih.gov/gap).

Phenotypic description and details about the CAMP CARE data can be found at http://

www.ncbi.nlm.nih.gov/gap/?term=asthma. The ‘replication GCPCR’ were white and black

asthmatics and allergic controls that were enrolled in the repository after the discovery

GCPCR cohort. The CCC is a population-based cohort of white adults with no personal or

family history of asthma (by self-report) representative of Greater Cincinnati.

Gene and SNP Selection and Genotyping

The methods for the gene and SNP selection for the discovery array have been previously

described26, 34. FLG, SPINK5 and TSLP were chosen for these analyses based on their skin-

related role and biologic relevance in the pathogenesis of asthma. To reduce the number of

SNPs genotyped while generating the same amount of genetic information, tagging SNPs

that maximized genomic coverage and captured the common genetic variation in these genes

were selected using Haploview and Tagger (http://www.broad.mit.edu/mpg/haploview).

Table 1 includes a description of the selected genes, their reported processes and functions

as well as top associated disorders. A total of 40 SNPs, 1 truncation and 1 deletion in the

FLG, SPINK5 and TSLP genes were considered for the discovery analyses.

Subjects from the GCPCR were selected for genotyping if they had 1) a pulmonary function

test or completed asthma symptom questionnaire, 2) a SPT or completed Children's Health
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Survey for Asthma35 and 3) ≥250ng DNA with an optical density of 1.6-2.2. Allergic and

non-asthmatic, non-allergic controls were selected from the GCC that had available DNA.

Genomic DNA was isolated from GCPCR buccal swabs with either the Zymo Research

Genomic DNA II Kit (Zymo Research Corp., Orange, CA) or the Purgene DNA Purification

System (Gentra Systems Minneapolis, MN), and from Oragene saliva samples per the kit's

instructions. Genomic DNA was extracted from GCC blood samples using Manual

PerfectPure DNA Blood Kit (Invitrogen, Carlsbad, CA). Genotyping of GCPCR and GCC

samples was performed using a custom Illumina Golden Gate assay according to the

manufacturer's protocol (http://www.illumina.com; San Diego, CA)26, 34. Genotypes were

assigned using BeadStudio's genotyping module (BeadStudio v3.2, San Diego, CA).

Genotyping of FLG R501X truncation and 2282del4 deletion was performed by PCR and

restriction fragment length polymorphism in both CCAAPS and the GCPCR as previously

described36, 37. Genotyping of the CCAAPS population for SPINK5 (29 SNPs) and TSLP

(10 SNPs) was performed on banked saliva samples using a second custom Illumina Golden

Gate assay. The publicly available data downloaded from dbGaP for both the CAMP and

CARE replication cohorts were generated using the Affymetrix 6.0 SNP chip. Genotyping

data from the Affymetrix 6.0 SNP chip was also available for the CCC. For the replications,

all SNPs available in SPINK5 or TSLP for each population were included; only those SNPs

that were on the discovery SNP array and/or those that had a p<0.05 are displayed.

Statistical Analyses

SNPs failing Hardy Weinberg Equilibrium in the non-allergic control group (p<0.0001,

having minor allele frequencies below 10% in the combined controls; or missing call rates

greater than 10%) were excluded (n=11). In addition, individuals with more than 20% of

their total SNPs missing were excluded. Principal component (PC) analyses were performed

using the 30 included ancestry-informative markers (AIMs) in EIGENSTRAT38, 39 to

account for potential population stratification. Sets of AIMS ranging from 24-128 are useful

tools for ascertaining the origin of subjects from particular continents, and to correct for

population stratification in admixed population sample sets40. After PCs were included in

the model the genomic inflation factor was 1.0, suggesting minimal impact of population

stratification for these AIMs, which is not unexpected since the general Cincinnati

population does not show any North/South or East/West stratification based on larger panels

of AIMS used for the larger GCC population (data not shown). Using PLINK41, associations

with asthma were tested adjusting for age, sex and PCs (four PCs used in white and no PCs

needed in black analyses) using the additive logistic regression model stratified by race. To

address multiple testing, we determined the average pairwise LD (as measured by r2) for all

SNP combinations and calculated the Bonferroni correction using Simple Interactive

Statistical Analyses Software (http://www.quantitativeskills.com/sisa/).

For the GCPCR whites and blacks, associations with the primary phenotype of asthma were

therefore considered significant at 0.0077 and 0.0039, respectively. For the CAMP and

CARE cohorts, association analysis was performed using the transmission disequilibrium

test (TDT)42. The case-control analyses for the GCPCR/CCC replication was accomplished

by fitting a logistic regression model adjusted for sex. We used the strictest definition of

genetic replication provided by Sullivan et al, which requires that the replication be the same
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SNP, phenotype and direction of association resulting in a mean false replication rate of

2%43.

Permutation tests provide a computationally intensive approach to generating significance

levels empirically. The purpose of the permutation test is to show that it is very unlikely that

a permuted dataset will achieve the same significance and the observed effect is not due to

chance. It also provides a framework for correction for multiple testing by keeping the

patterns of LD between SNPs the same under the observed and permuted samples. We

permuted the binary outcome (asthma vs. non-allergic control, or asthma vs. allergic control)

10,000 times and estimated the probability distribution of the statistic under the null

hypothesis. The empirical p value was defined as the probability of observing permuted

statistics larger than the observed statistics.

After the primary analyses, secondary analyses were performed to ensure that the observed

genetic associations with asthma were not due to other co-morbid allergic conditions such as

atopic dermatitis (AD) and sensitization. The genetic associations with asthma excluding all

cases with known co-morbid AD were performed by fitting a logistic regression model

adjusted for age, sex and PCs. Genetic associations with SPT were evaluated for any SPT+

as well as positivity to molds, pollens, animals or dust. Subjects that were SPT+ were

compared to non-asthmatic, non-allergic controls as well as SPT+/SPT- restricted to

asthmatics. The SPT analyses was carried out in PLINK41 adjusted for age, sex and PCs

using the additive logistic regression model in whites only due to sample size limitations for

the blacks.

To evaluate epistasis between SPINK5 and TSLP, we conducted analyses using a gene

collapsing technique since the significant SNPs had low minor allele frequencies (∼10%).

SNPs included in the analysis were identified by the magnitude of effect (OR) and

significance (p-value). Four SNPs in SPINK5 had an OR>1.3 and p<0.01 (rs2303064,

rs7445392, rs2303063 or rs9325071) and 3 SNPs in TSLP had an OR<0.70 and p<0.01

(rs10062929, rs11466749, and rs11466750). The children were then identified as having any

(SPINK5+) or none (SPINK5-) of the minor alleles in the four risk SNPs from SPINK5, as

well as having any (TSLP+) or none (TSLP-) of the minor alleles in the three protective

SNPs in TSLP. For FLG, children having one or more copies of the R501X truncation or

2282del4 deletion were defined as FLG+ and those with neither of these two

polymoprphisms were defined as FLG-.

Results

Demographics of Discovery Subjects

A total of 1503 children from the GCPCR and GCC were eligible for genotyping on the

custom SNP chip after inclusion criteria were applied: age (4-17), race (Caucasian or

African-American), diagnoses (asthma, AR or AD), DNA quantity (≥250ng), DNA quality

(optical density 1.6-2.2) and available pulmonary function test, SPT or questionnaire data

(asthmatics only). After excluding 37 genotyped children due to missing SNP call rates

>20%, the discovery GCPCR/GCC population consisted of 1,466 asthmatic (402 and 308),

allergic (257 and 152) and non-allergic (297 and 50) white and black children respectively
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(Supplementary Table 1). The non-allergic control children were older than the asthmatics

of similar race (p<0.05), and there were more male black asthmatics than black non-allergic

controls (p<0.05).

Genetic Associations with Asthma in the Discovery GCPCR Population

The associations of SNPs in FLG, SPINK5 and TSLP were evaluated independently for

whites and blacks, adjusted for age, sex and population stratification. After consideration for

multiple comparisons, a non-synonymous SNP in SPINK5, rs2303064, was significantly

associated with asthma in white subjects compared to non-allergic controls (p=0.003) and a

tagging SNP in TSLP (rs11466750) was significantly associated with asthma in whites

compared to allergic children (p=0.0056, Table 2). Multiple SNPs in both SPINK5 and

TSLP were nominally associated with asthma (p<0.05). No SNPs or deletion variants in

FLG achieved significance.

To further substantiate our results and ensure that the family wise error rate was

appropriately controlled, we performed 10,000 permutations. The point-wise empirical p-

value was consistent with the observed p-value (0.0026 for rs2303064 and 0.0046 for

rs11466750; results not shown) supporting its validity. The family-wise corrected p-values

were 0.039 and 0.069 for rs2303064 and rs11466750, respectively.

In order to ensure that the genetic associations with asthma were not attributed to other co-

morbid allergic conditions such as atopic dermatitis (AD), we performed secondary analyses

excluding asthmatic cases with AD and evaluated SPT+ as an outcome. These analyses were

performed in whites only due to sample size limitations for the blacks. The associations with

asthma remained significant after asthmatics with known co-morbid AD were excluded

(p=0.003 for rs2303064 and 0.004 for rs11466750; data not shown), indicating an asthma

specific association. We did not observe any significant associations with SPT+ (data not

shown).

Genetic Associations with Asthma in Replication Cohorts

We evaluated SNP associations in the SPINK5 and TSLP genes with asthma in six

additional populations: CAMP, CARE, CCAAPS, replication GCPCR/CCC, and replication

GCPCR (whites and blacks). Based on our stringent replication definition (same SNP,

phenotype and direction of association), we achieved replication of the SPINK5 rs2303064

variant in the CARE population (p=0.046; Table 3). In addition, we observed additional

SNPs in SPINK5 and TSLP to be nominally (p<0.05) associated with asthma in five of the

six populations (Table 3).

Epistasis between SPINK5 and TSLP

The literature suggests that SPINK5 and TSLP occupy a shared pathway where LEKTI

deficiency ultimately leads to TSLP production, increasing the Th2 response and causing

allergic lung inflammation21, 44-48. Therefore, we sought to determine if there were epistatic

effects of variation in the SPINK5 and TSLP genes on asthma prevalence. Formal gene:gene

analyses did not show an interaction between SPINK5 and TSLP (p=0.29). Further analyses

were performed stratified by either SPINK5 or TSLP genotype by conducting gene
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collapsing analyses. We evaluated the effects of having one or more of the 3 protective

TSLP alleles (rs10062929, rs11466749, and rs11466750) among subjects with and without

one or more of the risk SPINK5 alleles (rs2303064, rs7445392, rs2303063 or rs9325071).

There was modest linkage disequilibrium among the SPINK5 SNPs as well as the TSLP

SNPs (Figure 1). In subjects with at least one of the SPINK5 risk alleles (SPINK5+), the

absence of the TSLP protective minor alleles (TSLP-) was associated with a significant

increase in asthma risk (67% vs. 53%, p=0.0017, Figure 2A). In contrast, the presence

(TSLP+) or absence of TSLP minor alleles did not affect asthma risk in subjects without any

of the SPINK5 risk alleles (SPINK5-, p=0.71).

Replication of Epistasis between SPINK5 and TSLP

Using biologic plausibility of a shared pathway from the published literature and the results

from above, we pursued replication of the observed epistasis of SPINK5 and TSLP in the

discovery GCPCR black, replication GCPCR white and replication GCPCR black

populations. Notably, there were no independent genetic associations at our LD-adjusted

Bonferroni level with any SNPs in SPINK5 or TSLP in these three populations. Therefore,

we included SNPs with p<0.10 and OR >1.2 for SPINK5 (rs6892205 and rs2303063) and

p<0.10 and OR <0.7 for TSLP (rs3806933 and rs2289276) in the analyses (Table 3). We

replicated the epistasis between SPINK5 and TSLP in the replication GCPCR black

population (Figure 2B); the other two populations did not replicate. As in the discovery

GCPCR white population, SPINK5+ black subjects that were SPINK5+ TSLP+ had a

significantly decreased asthma risk compared to subjects that were SPINK5+ TSLP- (73%

versus 85%, p=0.036; Figure 2B), whereas there was no effect of TSLP minor alleles among

subjects that were SPINK5- (p=0.80).

Discussion

While the role of skin-related genes in asthma has been previously reported, our data support

that asthma risk is, in part, a result of epistasis between skin-related genes (TSLP and

SPINK5). Using a well characterized cohort of white asthmatic cases and controls, we

identified SNPs in these genes to be significantly associated with asthma in children. The

finding with SPINK5 was replicated according to the strictest replication definition43.

Additionally, we discovered epistasis between TSLP and SPINK5 in whites. This was

replicated using a black cohort where neither gene was independently associated. These

findings highlight the importance of evaluating epistasis in genetic association studies.

Further, our results emphasize the need to utilize biology to inform analyses in order to

identify genetic susceptibility to complex diseases, substantiate the value of smaller well-

characterized cohorts in genetic association studies, and demonstrate the importance and

value of looking at functionally related genes, rather than one at a time as in GWAS, to

identify genes with clinical relevance.

This study further implicates skin-related genes in the pathogenesis of childhood asthma.

Interestingly, the associations of the skin genes with asthma were sustained when children

with co-morbid AD were excluded from the analysis, suggesting an independent asthma

effect. Associations between asthma and SPINK5 have been reported in the Chinese24 and
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German23 populations. Previous studies have also found that TSLP SNPs are associated

with asthma49, including a meta-analysis of GWASs in subjects of multiple ancestries50.

This is the first report of an epistatic effect of SNPs in the SPINK5 and TSLP genes with

asthma. We discovered epistasis between TSLP and SPINK5 whereby children that had one

or more SPINK5 risk alleles and were wild-type for all TSLP SNPs had the highest risk of

asthma. The addition of TSLP minor alleles conferred protection from asthma in the

presence of a SPINK5 risk allele, and this protection was stronger than the association

between TSLP and asthma alone. Importantly, our primary analyses did not detect

independent significant associations with SPINK5 and TSLP in the black population. Only

after stratified analyses were we able to uncover the epistatic effect of SPINK5 and TSLP in

the black population. Thus, ignoring epistatic effects may mask important genetic

susceptibility. While other studies have utilized biologic plausibility51, 52, results from

linkage analyses53, 54 and bioinformatics54, 55 to inform analyses of genetic interactions in

asthma, our study is the first to apply this approach in an independent population and

replicate findings where no significant independent effects were observed (blacks).

Observations from animal models provide valuable insights into the possible mechanistic

basis for the observed epistasis between SPINK5 and TSLP. Mice that lack Spink5

overexpress TSLP in the skin in the absence of lympho-epithelial kazal-type-related

inhibitor (LEKTI)20. Overexpression in the skin leads to high systemic availability of TSLP

driving susceptibility to allergic inflammation in the lung, even in the absence of any skin

pathology19. TSLP transgenic mice develop severe asthma in the absence of a skin

phenotype and express low levels of the TSLP transgene in the trachea but not in the lung19.

Further, the protein is absent in the bronchoalveolar fluid suggesting systemic skin-derived

TSLP is sufficient to predispose mice to allergic lung inflammation19. Models using lung-

specific expression of the TSLP transgene or intranasal administration of TSLP show that

increased lung TSLP drives an inflammatory response in the presence of antigen, suggesting

that TSLP modifies the response to aero-antigen, promoting inflammation20, 56. Murine

models of asthma treated with anti-TSLP antibody reversed airway inflammation, prevented

structural alterations and decreased airway hyperresponsiveness57, while suppression of

signaling with anti-TSLP receptor reduces eosinophilic airway inflammation, goblet cell

hyperplasia and TH2 cytokine production58.

These animal data, along with our results, support a shared pathway for SPINK5 and TSLP

(and possibly FLG) leading to airway inflammation and asthma development (Figure 3).

SPINK5 overexpression in human epithelial cells leads to increased inflammatory cytokines

including IL6, IL8 and RANTES, indicating it may have a role in the pathogenesis of

asthma that is independent of protease inhibition59 (Figure 3A). This suggests that SPINK5

stimulates the involvement of B and T lymphocytes, neutrophils and eosinophils active in

the inflammatory process through its effects on pro-inflammatory cytokines and

chemokines. In humans, LEKTI deficiency results in a lack of kallikrein-related peptidase 5

(KLK5) and KLK7 inhibition21, 60 and unopposed KLK14 activity21, activating through

protease-activated receptor-2 (PAR-2) which is found at the surface of keratinocytes. PAR-2

then activates nuclear factor kappa B (NF-κB) leading to the production of the TSLP

cytokine21, 60 causing the differentiation of Th0 cells to Th2 which produce IL-4, IL-13 and

IL-5, amplifying the Th2 response and promoting inflammation, allergy and asthma (Figure
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3B). LEKTI deficiency also promotes increased profilaggrin cleavage44 leading to a

compromised barrier45 promoting sensitization and inflammation (Figure 3C).

While we were successful in identifying both main and epistatic effects with TSLP and

SPINK5, no associations with FLG were identified. This is not surprising given the low

frequency of the functional FLG variants in our population resulting in inadequate power to

detect an association. However, our data does support that common variation in FLG,

represented by our 6 tagging SNPs, is not associated with asthma in these populations. A

meta-analysis of asthma regardless of eczema revealed a significant association with the

combined R501X and 2282del4 genotype (pooled OR 1.48, 95%CI 1.32-1.66)61, indicating

that FLG deficiency may predispose to asthma. However, the asthma association was driven

by the asthma plus eczema phenotype, supporting that FLG is only associated with asthma

in the presence of atopic features.

The identification of epistasis between SPINK5 and TSLP is has immediate clinical

implications; there are clinical trials underway testing AMG157, a human monoclonal

antibody that inhibits the action of TSLP. Phase 1 escalation studies to evaluate the safety,

tolerability and pharmacokinetics in both healthy subjects and subjects with atopic

dermatitis have been completed62, 63 and another study evaluating the effects of AMG157

on FEV1 after allergen inhalation challenge in mild atopic asthmatics is currently

recruiting64. The results from our study suggest that the therapeutic effects of anti-TSLP

therapy in asthmatics may be dependent on SPINK5 genotype.

In conclusion, our results support a novel epistasis between SPINK5 and TSLP, which

contributes to childhood asthma. These findings emphasize the importance of utilizing

biology to inform analyses to identify genetic susceptibility to complex diseases, especially

in populations that do not exhibit independent genetic associations. The results from our

study are clinically relevant with respect to anti-TSLP therapy and suggest that therapeutic

effects in asthmatics may be dependent on SPINK5 genotype.
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Key Messages

• Our study supports epistasis between SPINK5 and TSLP which contributes to

childhood asthma.

• Genetic association studies should use biologic plausibility to inform analyses to

identify genetic susceptibility to complex disease.

• The therapeutic effects of anti-TSLP therapy in asthmatics may be dependent on

SPINK5 genotype.
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Figure 1.
Linkage disequilibrium (r2) among SNPs included in the gene collapsing analyses for 407

asthmatics compared to 257 allergic controls in the white discovery GCPCR populations.
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Figure 2.
Epistasis of SPINK5 and TSLP. (A) Discovery white GCPCR/GCC children. (B)

Replication of epistasis of SPINK5 and TSLP in replication GCPCR black children.
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Figure 3.
Hypothesized shared pathways leading to asthma and inflammation. (A) SPINK5

overexpression increases inflammatory cytokines. (B) LEKTI deficiency increases

KLK5/7/14, activating through PAR-2, and NF-κB leading to TSLP production, causing

allergy and lung inflammation. (C) LEKTI deficiency increases profillagrin cleavage

compromising the skin barrier and contributing to sensitization and subsequent asthma.

Solid lines represent published pathways, dashed lines represent hypothesized pathways.
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